skip to main content


Search for: All records

Creators/Authors contains: "MacLaren, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Since the observation that the properties of ferroic domain walls (DWs) can differ significantly from the bulk materials in which they are formed, it has been realized that domain wall engineering offers exciting new opportunities for nanoelectronics and nanodevice architectures. Here, a novel improper ferroelectric, CsNbW2O9, with the hexagonal tungsten bronze structure, is reported. Powder neutron diffraction and symmetry mode analysis indicate that the improper transition (TC= 1100 K) involves unit cell tripling, reminiscent of the hexagonal rare earth manganites. However, in contrast to the manganites, the symmetry breaking in CsNbW2O9is electronically driven (i.e., purely displacive) via the second‐order Jahn–Teller effect in contrast to the geometrically driven tilt mechanism of the manganites. Nevertheless CsNbW2O9displays the same kinds of domain microstructure as those found in the manganites, such as the characteristic six‐domain “cloverleaf” vertices and DW sections with polar discontinuities. The discovery of a completely new material system, with domain patterns already known to generate interesting functionality in the manganites, is important for the emerging field of DW nanoelectronics.

     
    more » « less